Two-pulse Solutions in the Fifth-order Kdv Equation: Rigorous Theory and Numerical Approximations

نویسندگان

  • Marina Chugunova
  • Dmitry Pelinovsky
  • Miguel Sanjuan
  • MARINA CHUGUNOVA
  • DMITRY PELINOVSKY
چکیده

We revisit existence and stability of two-pulse solutions in the fifth-order Korteweg–de Vries (KdV) equation with two new results. First, we modify the Petviashvili method of successive iterations for numerical (spectral) approximations of pulses and prove convergence of iterations in a neighborhood of two-pulse solutions. Second, we prove structural stability of embedded eigenvalues of negative Krein signature in a linearized KdV equation. Combined with stability analysis in Pontryagin spaces, this result completes the proof of spectral stability of the corresponding two-pulse solutions. Eigenvalues of the linearized problem are approximated numerically in exponentially weighted spaces where embedded eigenvalues are isolated from the continuous spectrum. Approximations of eigenvalues and full numerical simulations of the fifth-order KdV equation confirm stability of two-pulse solutions associated with the minima of the effective interaction potential and instability of two-pulse solutions associated with the maxima points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation

Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

A Dual-petrov-galerkin Method for Two Integrable Fifth-order Kdv Type Equations

This paper extends the dual-Petrov-Galerkin method proposed by Shen [21], further developed by Yuan, Shen and Wu [27] to general fifth-order KdV type equations with various nonlinear terms. These fifth-order equations arise in modeling different wave phenomena. The method is implemented to compute the multi-soliton solutions of two representative fifth-order KdV equations: the Kaup-Kupershmidt ...

متن کامل

Application of Variational Iteration Method to the Fifth-Order KdV Equation

Abstract In this paper, we propose an efficient approach to solve the fifthorder KdV equations. By using the variational iteration method, the exact solutions of the fifth-order KdV equations are given without the calculation of the complicated Adomian’s polynomials, linearization, discretization, weak nonlinearity assumptions or perturbation theory. Numerical examples are presented that show t...

متن کامل

Some Exact Solutions of Two Fifth Order KdV-Type Nonlinear Partial Differential Equations

We consider the generalized integrable fifth order nonlinear Korteweg-de Vries (fKdV) equation. The extended Tanh method has been used rigorously, by computational program MAPLE, for solving this fifth order nonlinear partial differential equation. The general solutions of the fKdV equation are formed considering an ansatz of the solution in terms of tanh. Then, in particular, some exact soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007